32 research outputs found

    What has finite element analysis taught us about diabetic foot disease and its management?:a systematic review

    Get PDF
    Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot.A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk.Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues.While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making

    Relatório de estágio em farmácia comunitária

    Get PDF
    Relatório de estágio realizado no âmbito do Mestrado Integrado em Ciências Farmacêuticas, apresentado à Faculdade de Farmácia da Universidade de Coimbr

    Stromatolites in Walker Lake (Nevada, Great Basin, USA) record climate and lake level changes ~ 35,000 years ago

    No full text
    Walker Lake is a closed-basin remnant of the large Pleistocene glacial Lake Lahontan system that has experienced multiple high amplitude (100–200 m) changes in water level over the past ~ 40,000 years in response to changes in climate. A laminated carbonate stromatolite composed of varying proportions of calcite fans and micrite was collected from a paleoshoreline located at approximately 58 m above present lake level. Radiocarbon dating revealed that the stromatolite spans approximately 2000 years of growth, from 35,227 to 33,727 calibrated years before present (YBP), a time period during which paleolake-level is not well-constrained. Distinct laminae were drilled along the growth axis, and the resulting powders were collected for clumped isotope analyses to generate formation temperatures (lake water temperatures) during stromatolite formation from which δ18Owater was calculated. Results indicate that the stromatolite experienced an initial increase in temperature and water δ18O values followed by a decrease in both during the course of accretion. The resulting temperature and isotopic data were input into a Rayleigh distillation model for lakewater evaporation in order to estimate the magnitude of lake level and volume fluctuations over the course of accretion. Modeling results reveal a lake level decrease of between 8.1 and 15.6 m, followed by an increase of between 4.3 and 8.8 m during the course of stromatolite growth. The results of this study indicate that Walker Lake experienced significant lake volume change over the course of 2000 years, perhaps as a response to precipitation changes driven by fluctuations in the polar jet stream and accompanying changes in regional climate, and/or evaporation-induced changes in lake level. These results add to a growing body of research indicating that stromatolites and other lacustrine tufas represent a detailed and extensive terrestrial archive that can potentially be used to reconstruct the timing and magnitude of climate change
    corecore